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spots from mixed regions are quite sharp, that the
widths of most of the domains are not much less than
about 1u. Some smearing out along the columns in the
X-ray photographs is observed which indicates some
one-dimensional disorder.

The authors wish to express their sincere thanks to
Professors E. Alexander and I.T.Steinberger for many
helpful discussions and suggestions.
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The Crystal Structure of 1,8-Dichloro-9-methylanthracene
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1,8-Dichloro-9-methylanthracene, C;sH1oCls, crystallizes in the orthorhombic space group Prnma with

a=713,b=1946, c=876 A

, Z=4, Dovs=142 and Dcare=1-43 g.cm~3. Thus a crystallographic mirror

plane is imposed on the separate molecular units. The intensities of 772 reflexions were estimated
visually from integrated Weissenberg photographs. Atomic parameters have been refined by full-matrix
least-squares procedures to a conventional R index of 0:092. The chlorine and methyl carbon atoms
were assigned anisotropic thermal parameters; the other atoms isotropic parameters. All hydrogen
atoms have been located. There is a pronounced distortion of the anthracene skeleton, C(9) being
displaced by 0-19 A from the mean molecular plane. The methyl carbon displacement is 0-80 A on
the same side of the plane as C(9), while the chlorine displacement is 0-33 A on the opposite side.

Introduction

There are now a number of structural data available
relating to the molecular distortions which arise when
naphthalene is peri-substituted. (For a review see
Balasubramaniyan, 1966.) Hitherto, however, there
appears to have been no structure analysis which could
cast light on the related problem in the peri-substitution
of anthracene.

The electronic absorption spectrum of 1-chloro-9-
methylanthracene relative to that of 1-chloro-10-
methylanthracene has been interpreted by Bouas-
Laurent & Lapouyade (1965) as being consistent with
distortions of the ground state molecular configuration
of the 1,9(peri) substituted compound. In particular, the
shift to longer wave-lengths of the band in the 3900 A
region, which accompanies peri-substitution, is believed
to reflect the reduction in energy difference between the
ground and excited electronic states to be expected as
the result of molecular distortion. With a view to
establishing the extent of such distortions, we began
X-ray studies on crystals of 1-chloro-9-methylanthra-
cene and 1,8-dichloro-9-methylanthracene. The rela-
tively poor quality of the diffraction data obtainable
from the monochloro compound at room temperature
(22°C) caused us to abandon further work on it in
favour of the dichloro compound in which the dis-
tortions would be expected to be even greater.

Experimental

A sample of 1,8-dichloro-9-methylanthracene was
kindly supplied by Professor Henri Bouas-Laurent of
the Universiy of Bordeaux, France. Suitable crystals
were mounted on glass fibres and appeared to be
stable in air and to X-rays.

Crystal data

1,8-Dichloro-9-methylanthracene, C;sH;(Cl,, M=
261-2. Orthorhombic with a=7-13(1), b=19-46(3),
c=876(1) A. (A=1-5418 A for Cu K« radiation. The
numbers in parentheses here and elsewhere are esti-
mated standard deviations in the least significant fig-
ures quoted). U=1215 A3, Dops=142(2) g.cm-3
(by flotation). Z=4, Dcg1e=143 g.cm=3, F(000)= 1536,
#(Cu Ko)=454 cm-!, u(Mo Ka)=5-1 cm~l. Sys-
tematic absences: Ok/ for (k+/) odd, 4kO for h
odd.

Unit-cell dimensions were obtained from zero-level
precession photographs with Polaroid film (Swink &
Carpenter, 1967). Systematic absences of X-ray re-
flexions were consistent with space groups Pnma (which
requires molecular symmetry m) and Pn2,a (which re-
quires no molecular symmetry). Intensity statistics
(Wilson, 1949; Howells, Phillips & Rogers, 1950)
favoured centrosymmetric Pnma and the structure has
been solved and refined in this space group.
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X-ray intensity data were obtained by visual esti-
mation of integrated equi-inclination Weissenberg
film packs obtained with Cu K« radiation. Within the
levels (O---5k0), 1103 independent reflexions (75% of
the Cu K« limiting sphere) were accessible. Of these,
331 were below the threshold of observation, leaving
772 which were used for structure solution and refine-
ment. One crystal, approximately a cube, with edge
0-1 mm, was used for all levels. No absorption correc-
tions were made. The Weissenberg data were placed
on a common scale with the aid of (A07) and (kh!) data
obtained with Mo K« radiation on a precession camera.
The crystal used for this purpose was a disc of thickness
about 0-2 mm and diameter 1:-0 mm with the crystal-
lographic b axis coinciding with the axis of the disc.
The spots produced on the precession films were,
therefore, large and of uniform shape.

Initial computations were performed on an IBM
1620 by use of various local computer programs and
local modifications of Mair’s SFLS (block diagonal
least-squares) and Van der Helm’s ICRl (Fourier
calculations). Solution and refinement of the structure
were completed on an IBM 360/44 computer with
16K words of core storage and twin 2315 disc storage
drives. Programs, which have been modified extensively
and adapted to this hardware include Zalkin’s
FORDAP for Fourier calculations, the Busing-Martin-
Levy ORFLS full-matrix least-squares and O RFFE-II
error function programs and Pippy & Ahmed’s
MEAN PLANE program.

Solution and refinement of the structure

Initial values for the coordinates of all non-hydrogen
atoms were obtained from the three-dimensional
Patterson function. The distribution of peaks indi-
cated a centrosymmetric arrangement for the mol-
ecules and refinement was commenced in space group
Pnma. The atomic scattering factors for chlorine and
carbon were taken from International Tables for X-ray
Crystallography (1962), real dispersion corrections
being applied for chlorine only; the scattering factor
of hydrogen was that tabulated by Stewart, Davidson
& Simpson (1965). The usual agreement index
R= X ||F,|—I|F:||| X |Fs| was reduced from 0-39 to
0-20 in four cycles of block-diagonal least squares, all
atoms being refined isotropically. All atoms appeared
to be correctly located except the methyl carbon atom
which was relocated from an electron density difference
map. Four further cycles reduced R to O0-18.

At this stage full-matrix least-squares refinement
was commenced, the quantity Zw(F,—S¢Fc)* being
minimized. Unobserved reflexions were given zero
weight. Discrepancy indices are Ry= Z ||Fo| —|SoFel|/
X |F,| and the weighted R value R,=( ZwAdF2/ ZwF?)l/2
Two cycles of refinement produced no significant
changes in any parameters. A subsequent difference
map showed several large peaks, the largest, of height
2-5 e.A—3 being close to the chlorine atom. Accordingly,
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in the next round of calculations the chlorine and
methyl carbon atoms were allowed to vibrate aniso-
tropically, temperature parameters for all other non-
hydrogen atoms being fixed at the values given by the
previous isotropic refinement. In addition, the contri-
butions of the four independent ring hydrogen atoms
were included with an isotropic thermal parameter of
6:0 A2, no parameters being refined for these atoms.
Two cycles of refinement reduced R, and R, to 0-104
and 0-144, the weighting scheme being one based on
scatter in the film factor ratios. Two further cycles
varying all relevant parameters (including those for
the four H atoms) reduced R; and R, to 0-095 and
0-131.

The largest peak given by the next difference map
was of height 10 e.A-3 and situated close to the chlor-
ine atom. The next largest were several of height
about 0-5e.A-3. Two of these were in positions ex-
pected to be occupied by methyl hydrogen atoms so as
to maximize chlorine~-hydrogen separation if the
methyl group is not rotating freely and the hydrogen
atoms are fixed. As the parameters for the ring hydro-
gen atoms appeared to have refined successfully, we
were encouraged to attempt to refine parameters for
the methyl hydrogen atoms as well. After several cycles
the shifts for all hydrogen atom parameters were
less than 0-1 of the estimated standard deviation, R, and
R, being reduced to 0-092 and 0-126. This improve-
ment in R, over the refinement without the methyl
hydrogen atoms is highly significant (Hamilton, 1965).
We take the successful least-squares refinement and
the physical reasonableness of the resulting param-
eters as evidence that the methyl hydrogen atoms are
fixed in the crystal.

Analysis of the weighting scheme showed that ex-
cessive weights were being given to medium and strong
reflexions. A more appropriate set of weights was
obtained by using Cruickshank’s (1965) formula,

w=(a+|Fol +bF})™,
with @¢=40, b=0-0167. Several additional cycles

Me(2)

Fig.1. Bond angles (degrees) and lengths (A) and crystallo-
graphic numbering scheme for 1,8-dichloro-9-methylanthra-
cene.
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Table 1. Positional and thermal parameters
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using these weights produced no significant shifts in
any parameter, the final values of R; and R, being
0-092 and 0-131. The final difference map using all
772 observed reflexions still showed the peak of height
1-0 e.A-3 close to the chlorine atom; the next peak of
height 0-5 e.A-3 was approximately the height of
a hydrogen atom in the structure. Analysis of the
anisotropic thermal motion of the chlorine atom shows
that the principal axis of vibration is perpendicular to
the mean plane of the anthracene skeleton. The large
residual peak lies, approximately, along the direction
of this axis, 0-9 A from the chlorine atom and on the
opposite side of the molecule. Assuming that the peak
is genuine and does not arise from systematic errors
in the data or series termination errors, it seems pos-
sible that the six-parameter model of anisotropic vi-
bration for the chlorine thermal motion is inadequate.
A check on inter-layer scaling (a single scale factor
had been used throughout refinement) proved satis-
factory in that refining separate scale factors for data
from each film pack produced no significant improve-
ment in the agreement factors.

Positional and thermal parameters and their stan-
dard deviations as estimated from the inverse matrix are
listed in Table 1. In Table 2 are given the root mean-
square thermal amplitudes of vibration which may be
derived from the data of Table 1. Table 3 contains val-
ues, in electrons, of 10F, and 10F, for all 772 observed
reflexions, the values of F, being based on the param-
eters in Table 1. The principal axis of vibration of the
methyl carbon atom is in the mirror plane at y=% and
perpendicular to the C(9)-C(15) bond. For both
anisotropic atoms, the smallest axis of vibration is,
approximately, directed along the bond joining the
atom to the ring skeleton.

0-0220 (20)

0-0160 (31)
By

Table 2. Root mean square amplitudes of vibration (A)

Minimum Intermediate Maximum

Cl 0:193 (3) 0-249 (3) 0-344 (3)
C(15) 0-197 (20) 0-254 (12) 0:296 (14)

0-0666 (16)
z
0450 (7)
0061 (7)
1034 (8)
1417 (9)
0019 (6)
0905 (7)
0325 (9)
1367 (11)
134 (11)
—0-158 (9)
—0:175 (20)
0-021 (8)
0-193 (17)
* The form of the anisotropic thermal ellipsoid is exp [— (81172 + B22k? + 833124 21 2hk + 231 3h1 4 223kD)].

0
-0
-0
-0
-0
-0

0
-0

0
-0

Results and discussion

Molecular dimensions and the crystallographic
numbering scheme are shown in Fig. 1. Selected inter-
atomic distances and angles are given in Table 4. Devia-
tions from various weighted least-squares planes are
listed in Table 5. A convenient point of reference for
describing the molecular shape is the exact plane in the
central ring defined by atoms C(11), C(11"), C(12) and
C(12") (plane 1V). Deviations of carbon and chlorine
atoms from this plane are shown in Fig.2.

Overcrowding of the peri-substituents has been
relieved by a combination of in-plane and out-of-plane
deformations giving a chlorine-methyl carbon separa-
tion of 2:99 A ; values of 2:9-3-1 A are well established
from previous crystallographic results (Avoyan, Struch-
kov & Dashevskii, 1966). The most striking deforma-

y
1196 (3)
0608 (4)
0630 (4)
1237 (4)
1871 (3)
1874 (3)

0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2),

1298 (10)
2181 (11)
3737 (11)
4464 (12)
1957 (9)
3635 (10)
135 (12)
427 (11)
538 (12)
589 (25)
198 (12)
194 (23)

0-1067 (18)
X

-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0

0

0

1 Isotropic thermal parameter (
1 Parameter fixed by symmetry.

C(15)
C(1)
C(2)
C(3)
C(4)
C(11)
C(12)
C©9)
C(10)
H(2)
H(3)
H4)
H(10)
HMe(1)
HMe(2)

Cl



1592

tions are out of plane. The chlorine atoms are 0-33 A
from the mean molecular plane (plane I) while atoms
C(9) and the methyl carbon, C(15), are on the opposite
side of this plane and 0-19 and 0-80 A respectively from
it. In-plane distortion has arisen from adjustments to
bond lengths and bond angles. Bonds C(9)-C(11)
(longer by 0-03 A) and C(3)-C(4) (shorter by 0-04 A)
differ significantly from those reported for anthracene
(Mason, 1964); differences in bond lengths for C(1)-
C(11) (longer by 0-01 A) and C(2)-C(3) (shorter by
0-02 A), while not statistically significant, are logical
extensions of the changes to C(9)-C(11) and C(3)-C(4).
These adjustments, coupled with decreases in angles
Cl-C(1)-C(2), C(1)-C(11)-C(12) and C(11)-C(9)-
C(11°) to 115-8, 115-4 and 117-4° respectively and with
increases in angles Cl-C(1)-C(11) and C(1)-C(11)-
C(9) to 123-0° and 124-0°, result in a non-bonded
separation of 2:55A for C(1)-C(9) compared with
2:46 A for C(4)-C(10). Bond lengths for C(9)-C(15)
and C(1)-Cl are similar to values found for compounds
with the methyl carbon and chlorine atoms in similar
environments (Avoyan etal., 1966).

A 2 test shows that the outer rings are signif-
icantly non-planar (plane VI). This is best ex-
plained as a folding of each ring about a line joining

C(3) and C(11). The atoms C(1), C(2), C(3) and C(11) .

are essentially coplanar (plane II) as are C(4), C(12),
C(3) and C(11) (plane III), the angles between these
planes being 5-0°. Plane III makes an angle of 1-3°
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with the central ring plane. Out-of-plane deformation
in the central ring plane is mainly confined to C(9)
(0-12 A away).

The chlorine atom is 024 A from plane II compared
with 0-33 A from the mean molecular plane (plane I).
C(15) is 0-80 A away from plane I, 0-69 A off the cen-
tral ring plane and only 0-33 A from plane V, formed
by C(9)-C(11) and C(11°). Thus, out-of-plane dis-
tortions of the anthracene skeletons can be explained
in terms of the ring atoms which are bonded to substi-

Fig.2. Deviations (A) of carbon and chlorine atoms of 1,8-
dichloro-9-methylanthracene from the exact plane (IV)
through carbon atoms 11, 11/, 12, 12",

Table 3. Structure factor amplitudes for 1,8-dichloro-9-methylanthracene (electrons x 10)

The largest value of Feaic for the unobserved reflexions is 5-5 electrons.
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tuents [C(1) and C(9)] being forced out of plane in stituents in the 1,8,9 peri positions. However, the
the direction of the substituent to which they are bonded. mechanism for the relief of overcrowding in the present
case, a combination of out-of-plane deformations, and

Comparison with other overcrowded molecules in-plane distortions involving changes to bond lengths
We know of no other reported crystal structure and angles, is very similar to that generally observed
determination of an anthracene derivative with sub- for other overcrowded systems (Avoyan etal., 1966).

Table 4. Selected distances (A) and angles (°)

Intramolecular bonded distances Bond angles
C(1H)—Cl 1-726 (7) Cl—C(1)—C(2) 115-8 (5)
C(1H—C?2) 1-381 (9) Cl——C(1)—C(11) 123-0 (5)
C(2)—C(3) 1-400 (10) C(2)—C(1H)—C(11) 1206 (6)
C(3)—C4) 1-333 (10) C(1)—C2)—C@3) 1222 (7)
C(4)—C(12) 1-444 (9) C(2)—C(3)—C@4) 119-3 (7)
C(11)-C12) 1-426 (9) C(3)—C(4)—C(12) 121-5 (8)
C(1)—C(11) 1-453 (8) C(4)—C(12)-C(11) 1206 (6)
C(11)-C(9) 1-433 (7) C(4)—C(12)-C(10) 119:6 (7)
C(10)-C(12) 1-400 (8) C(10)-C(12)-C(11) 119:7 (6)
C(9)—C(15) 1-506 (16) C(12)-C(10)-C(12") 121-0 (9)
C(2)—H(?2) 098 (9) C(1)—C(11)-C(9) 124-0 (6)
C(3)—H(3) 1-11 (9) C(1)—C(11)-C(12) 115-4 (5)
C(4)—H@4) 0-76 (8) C(9)—C(11)-C(12) 120-6 (6)
C(10)-H(10) 1-11 (18) C(11)-C(9)—C(11") 117-4 (8)
C(15)-HMe(1) 1-16 (8) C(11)-C(9)—C(15 120-5 (5)
C(15)-HMe(2) 1-27 (16)
Dihedral angle*
Intramolecular non-bonded distances Cl--—C(1)-C(11) 348 (7

C(15)---C1 2-994 (7) C(15)-C(9)-C(11) )
C(1)----C) 2:548 (7)

C@4----C10) 2:457 (8)

Cl:---- HMe(1) 2:64

Cl---- HMe(2) 2-98

Cl----- H(2) 2-44

Intermolecular distancest

Cl---Cl 374

Cl---C 3-36

Ci---H 2:92

Cc.---C 3:53

C-'H 2-82

H---H 2:2

* Angles are between two plane each defined by three atoms.
1 The shortest intermolecular distance of the type specified.

Table 5. Least-squares planes showing atomic deviations (A)

Figures followed by an asterisk denote atoms not used to define the plane in question; additional atoms related by mirror plane
were used in defining planes 1, 1V, V.

I 11 111 v A% VI
C(1) —0-023 (7) —0-001 (7) — —0-089 (7)* — —0-020 (7)
C(2) —0-024 (7) 0-002 (7) — —0-056 (7)* —_ —0:016 (7)
C(3) 0-027 (7) —0-001 (7) —0-006 (7) 0-056 (7)* — 0:032 (7)
C4) 0-001 (8) — 0-014 (8) 0-056 (8)* — —0-002 (8)
C(1D 0-039 (6) 0-001 (6) 0-003 (6) 0 0 0-033 (6)
C(12) —0:023 (7) — —0-009 (7) 0 — -0:032 (7)
C(9) 0-188* — — 0-117%# 0 —
C(10) —0-017 (10) — — 0:036* (10) — —
Cl —0-327* —0-236* — —0-467* — —0-320*
C(15) 0-801* — — 0-690* 0-326* —

Equations of planes referred to orthorhombic crystallographic axes. X, Y, Z are atomic coordinates in A.
I 0-5801X —~0-8145Z+0-8349=0
I 0-6906X —~0-0283Y —0-7922Z +0:9407=0
1 0:5512X-+0:0215Y —0-8341Z2+0-6802=0
v 0-5438X —0-8392Z+0-7445=0
A" 0-4056 X —0-9140Z +0-5505=0
A\ 0-5816X—0-0057Y —0-8135Z2+0:8517=0
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In particular, the degree of out-of-plane deformation
as given by the « parameter of Silverman & Yannoni
(1967) agrees well with values obtained for systems as
intrinsically overcrowded as 1,8-dichloro-9-methyl-
anthracene. The angle « between planes formed by
CI-C(1)-C(11) and C(15)-C(9)-C(11) is 34-8° in this
compound, compared with values of 25-40° found for
systems where the interacting atoms are at the ends of
an hexagonal fragment of five atoms. The non-bonded
separation for these atoms would be 2-4 A for exact
tirgonal bonding.

Molecular packing

Fig.3 is a drawing of the contents of one unit cell
projected on to the (010) plane. The packing is charac-
terized by molecular pairs such as I and II which are
related by glide planes perpendicular to the c axis. The
anthracene skeletons of these pairs are practically
perpendicular, the closest approach being 3-36 A be-
tween C(1) and Cl. Table 4 contains a list of the shor-
test intermolecular contacts between any two types of
atom. With adjacent molecules perpendicular to each
other, the crystal packing is thus of type ‘A’ (Robert-
son, 1951). Knowledge of the relative orientation of
the monomer molecules may be useful in a study of
the solid-state photodimerization of this compound
(e.g. Schmidt, 1965; Craig & Sarti-Fantoni, 1966,
Bouas-Laurent & Lapouyade, 1967).

The authors wish to thank Professor Henri Bouas-
Laurent of the University of Bordeaux for suggesting
this problem to us and for providing a sample. They
are grateful to the originators of computer programs
used in the work and also to Drs J.A.Ibers and R.J.
Doedens for modifications incorporated in our local
versions. Finally, they acknowledge grants for equip-
ment made by the Research Committee of the New
Zealand Universities Grants Committee.
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